Recently, Neural architecture search has achieved great success on classification tasks for mobile devices. The backbone network for object detection is usually obtained on the image classification task. However, the architecture which is searched through the classification task is sub-optimal because of the gap between the task of image and object detection. As while work focuses on backbone network architecture search for mobile device object detection is limited, mainly because the backbone always requires expensive ImageNet pre-training. Accordingly, it is necessary to study the approach of network architecture search for mobile device object detection without expensive pre-training. In this work, we propose a mobile object detection backbone network architecture search algorithm which is a kind of evolutionary optimized method based on non-dominated sorting for NAS scenarios. It can quickly search to obtain the backbone network architecture within certain constraints. It better solves the problem of suboptimal linear combination accuracy and computational cost. The proposed approach can search the backbone networks with different depths, widths, or expansion sizes via a technique of weight mapping, making it possible to use NAS for mobile devices detection tasks a lot more efficiently. In our experiments, we verify the effectiveness of the proposed approach on YoloX-Lite, a lightweight version of the target detection framework. Under similar computational complexity, the accuracy of the backbone network architecture we search for is 2.0% mAP higher than MobileDet. Our improved backbone network can reduce the computational effort while improving the accuracy of the object detection network. To prove its effectiveness, a series of ablation studies have been carried out and the working mechanism has been analyzed in detail.
translated by 谷歌翻译
大多数现有的插槽填充模型倾向于记住实体的固有模式和培训数据中相应的上下文。但是,这些模型在暴露于口语语言扰动或实践中的变化时会导致系统故障或不良输出。我们提出了一种扰动的语义结构意识转移方法,用于训练扰动插槽填充模型。具体而言,我们介绍了两种基于传销的培训策略,以分别从无监督的语言扰动语料库中分别学习上下文语义结构和单词分布。然后,我们将从上游训练过程学到的语义知识转移到原始样本中,并通过一致性处理过滤生成的数据。这些程序旨在增强老虎机填充模型的鲁棒性。实验结果表明,我们的方法始终优于先前的基本方法,并获得强有力的概括,同时阻止模型记住实体和环境的固有模式。
translated by 谷歌翻译
尽管在半监督语义细分领域的进度程度不同,但其最近的大部分成功都涉及笨拙的模型,并且尚未探索轻量级解决方案。我们发现,现有的知识蒸馏技术更多地关注标签数据中的像素级概念,该数据未能在未标记的数据中考虑更有用的线索。因此,我们提供了首次尝试通过新颖的多晶蒸馏(MGD)方案提供轻量级SSS模型,其中从三个方面捕获了多个跨性别:i)互补的教师结构; ii)标记为未标记的数据合作蒸馏; iii)分层和多层次损失设置。具体而言,MGD被配制为标记的未标记数据合作蒸馏方案,该方案有助于充分利用在半监督环境中必不可少的不同数据特征。图像水平的语义敏感损失,区域级别的内容感知损失和像素级的一致性损失是通过结构互补的教师来丰富层次蒸馏抽象的。 Pascal VOC2012和CityScapes的实验结果表明,在不同的分区协议下,MGD可以超越竞争方法。例如,在1/16的CityScapes分区协议下,RESNET-18和MOBILENET-V2主链的性能分别增长了11.5%和4.6%。尽管模型骨干的拖曳量被3.4-5.3倍(RESNET-18)和38.7-59.6X(MobileNetV2)压缩,但该模型旨在实现令人满意的分割结果。
translated by 谷歌翻译
由于复杂的注意机制和模型设计,大多数现有的视觉变压器(VIT)无法在现实的工业部署方案中的卷积神经网络(CNN)高效,例如张力和coreml。这提出了一个独特的挑战:可以设计视觉神经网络以与CNN一样快地推断并表现强大吗?最近的作品试图设计CNN-Transformer混合体系结构来解决这个问题,但是这些作品的整体性能远非令人满意。为了结束这些结束,我们提出了下一代视觉变压器,以在现实的工业场景中有效部署,即下一步,从延迟/准确性权衡的角度来看,它在CNN和VIT上占主导地位。在这项工作中,下一个卷积块(NCB)和下一个变压器块(NTB)分别开发出用于使用部署友好机制捕获本地和全球信息。然后,下一个混合策略(NHS)旨在将NCB和NTB堆叠在有效的混合范式中,从而提高了各种下游任务中的性能。广泛的实验表明,在各种视觉任务方面的延迟/准确性权衡方面,下一个VIT明显优于现有的CNN,VIT和CNN转换混合体系结构。在Tensorrt上,在可可检测上,Next-Vit超过5.4 MAP(从40.4到45.8),在类似延迟下,ADE20K细分的8.2%MIOU(从38.8%到47.0%)。同时,它可以与CSWIN达到可比的性能,而推理速度则以3.6倍的速度加速。在COREML上,在类似的延迟下,在COCO检测上,下一步超过了可可检测的4.6 MAP(从42.6到47.2),ADE20K分割的3.5%MIOU(从45.2%到48.7%)。代码将最近发布。
translated by 谷歌翻译
最近,基于合成数据的实例分割已成为一种极其有利的优化范式,因为它利用模拟渲染和物理学来生成高质量的图像宣传对。在本文中,我们提出了一个并行预训练的变压器(PPT)框架,以完成基于合成数据的实例分割任务。具体而言,我们利用现成的预训练的视觉变压器来减轻自然数据和合成数据之间的差距,这有助于在下游合成数据场景中提供良好的概括,几乎没有样本。基于SWIN-B基的CBNET V2,基于SWINL的CBNET V2和SWIN-L基统一器用于并行特征学习,并且这三个模型的结果由像素级非最大最大抑制(NMS)算法融合来获得更强大的结果。实验结果表明,PPT在CVPR2022 AVA可访问性视觉和自主性挑战中排名第一,地图为65.155%。
translated by 谷歌翻译
我们从实际应用的角度重新审视了现有的出色变压器。他们中的大多数甚至不如基本的重新连接系列效率那么高,并且偏离了现实的部署方案。这可能是由于当前的标准测量计算效率,例如FLOPS或参数是单方面的,次优的和对硬件的不敏感的。因此,本文直接将特定硬件的紧张延迟视为效率指标,该指标提供了涉及计算能力,内存成本和带宽的更全面的反馈。基于一系列受控实验,这项工作为面向浓度和部署的网络设计提供了四个实用指南,例如,在阶段级别,早期的变压器和晚期CNN,在Block Level的早期CNN和Late Transformer。因此,提出了一个面向Tensortrt的变压器家族,缩写为TRT-VIT。广泛的实验表明,在不同的视觉任务(例如,图像分类,对象检测和语义细分)方面,TRT-VIT显着优于现有的Convnet和视觉变压器。例如,在82.7%的Imagenet-1k Top-1精度下,TRT-VIT比CSWIN快2.7 $ \ times $,比双胞胎快2.0 $ \ times $。在MS-COCO对象检测任务上,TRT-VIT与双胞胎达到可比的性能,而推理速度则增加了2.8 $ \ times $。
translated by 谷歌翻译
香草自我注意的机制固有地依赖于预定和坚定的计算维度。这种僵化的性限制了它具有面向上下文的概括,可以带来更多的上下文提示和全球表示。为了减轻此问题,我们提出了一种可扩展的自我注意(SSA)机制,该机制利用两个缩放因素来释放查询,键和价值矩阵的维度,同时使它们不符合输入。这种可伸缩性可获得面向上下文的概括并增强对象灵敏度,从而将整个网络推向准确性和成本之间的更有效的权衡状态。此外,我们提出了一个基于窗口的自我注意事项(IWSA),该自我注意力(IWSA)通过重新合并独立的值代币并从相邻窗口中汇总空间信息来建立非重叠区域之间的相互作用。通过交替堆叠SSA和IWSA,可扩展的视觉变压器(可伸缩率)在通用视觉任务中实现最先进的性能。例如,在Imagenet-1K分类中,可伸缩率S的表现优于双胞胎-SVT-S,而Swin-T则比1.4%。
translated by 谷歌翻译
图像级弱监督的语义分割(WSSS)是一个基本但具有挑战性的计算机视觉任务,促进了场景理解和自动驾驶。大多数现有方法都采用基于分类的类激活地图(CAM)作为初始伪标签进行播放,倾向于关注分割任务的定制特征。为了减轻这个问题,我们提出了一种新的激活调制和重新校准(AMR)方案,它利用聚光灯分支和补偿分支来获得加权凸轮,可以提供可重新校准和特定于任务的概念。具体地,用于重新排列来自信道空间顺序透视的特征重要性的分布,这有助于明确地模拟通道 - 方向的相互依赖性和空间编码,以自适应地调制面向分割的激活响应。此外,我们向双分支引入交叉伪监督,这可以被视为对互动两个分支的语义类似的正则化。广泛的实验表明,AMR在Pascal VOC 2012年数据集上建立了新的最先进的性能,不仅超越了当前方法培训的监督图像水平,而且一些方法依赖于更强的监督,如显着性标签。实验还揭示了我们的计划是即插即用的,可以与其他促进其性能的其他方法合并。
translated by 谷歌翻译
手写的数学表达式识别旨在自动生成来自给定图像的乳胶序列。目前,基于注意的编码器 - 解码器模型被广泛用于此任务。它们通常以左右(L2R)方式生成目标序列,留下左右(R2L)上下文未分发。在本文中,我们提出了一种基于聚合的双向互访网络(ABM),其包括一个共享编码器和两个并行逆解码器(L2R和R2L)组成。通过相互蒸馏增强了两个解码器,其涉及每个训练步骤的一对一知识转移,从而充分利用来自两个反向的互补信息。此外,为了处理各种规模的数学符号,提出了注意聚合模块(AAM)以有效地集成了多尺度覆盖关注。值得注意的是,在推理阶段,考虑到模型已经从两个反向方向学习知识,我们只使用L2R分支推断,保持原始参数大小和推断速度。广泛的实验表明,我们的拟议方法在2016年克罗欧2014年达到56.85%的识别准确性,52.92%,在克罗欧2019年的53.96%,没有数据增强和模型集合,大大优于最先进的方法。源代码可在补充材料中获得。
translated by 谷歌翻译
基于深度学习的模型占主导地位的生产推荐系统的当前景观。此外,近年来目睹了模型规模的指数增长 - 从谷歌的2016年模型,最新的Facebook的型号有10亿个参数,具有12万亿参数。型号容量的每次跳跃都有显着的质量增强,这使我们相信100万亿参数的时代即将来临。然而,即使在工业规模数据中心内,这些模型的培训也在挑战。这种困难是从训练计算的惊人的异质性继承 - 模型的嵌入层可以包括总模型尺寸的99.99%,这是极其内存密集的;虽然其余的神经网络越来越多地计算密集型。为支持培训此类巨大模式,迫切需要有效的分布式培训系统。在本文中,我们通过仔细共同设计优化算法和分布式系统架构来解决这一挑战。具体而言,为了确保培训效率和训练精度,我们设计一种新型混合训练算法,其中嵌入层和密集的神经网络由不同的同步机制处理;然后,我们构建一个名为Persia的系统(短暂的并行推荐培训系统,其中包含混合加速),以支持这种混合培训算法。理论上的示范和实证研究均达到100万亿参数,以证明了波斯的系统设计和实施。我们将Pensia公开使用(在https://github.com/persiamml/persia),以便任何人都能够以100万亿参数的规模轻松培训推荐模型。
translated by 谷歌翻译